
Relative Doubling Attack Against Montgomery

Ladder�

Sung-Ming Yen1, Lee-Chun Ko1, SangJae Moon2, and JaeCheol Ha3

1 Laboratory of Cryptography and Information Security (LCIS)
Dept of Computer Science and Information Engineering

National Central University, Chung-Li, Taiwan 320, R.O.C.
E-mail: {yensm;cs222085}@csie.ncu.edu.tw

http://www.csie.ncu.edu.tw/~yensm/

2 School of Electronic and Electrical Engineering
Kyungpook National University, Taegu, Korea 702-701

E-mail: sjmoon@ee.knu.ac.kr

3 Dept of Computer and Information
Korea Nazarene University, Choong Nam, Korea 330-718

E-mail: jcha@kornu.ac.kr

Abstract. Highly regular execution and the cleverly included redun-
dant computation make the square-multiply-always exponentiation al-
gorithm well known as a good countermeasure against the conventional
simple power analysis (SPA). However, the doubling attack threatens the
square-multiply-always exponentiation by fully exploiting the existence
of such redundant computation. The Montgomery ladder is also recog-
nized as a good countermeasure against the conventional SPA due to its
highly regular execution. Most importantly, no redundant computation
is introduced into the Montgomery ladder. In this paper, immunity of
the Montgomery ladder against the doubling attack is investigated. One
straightforward result is that the Montgomery ladder can be free from
the original doubling attack. However, a non-trivial result obtained in
this research is that a relative doubling attack proposed in this paper
threatens the Montgomery ladder. The proposed relative doubling at-
tack uses a totally different approach to derive the private key in which
the relationship between two adjacent private key bits can be obtained as
either di = di−1 or di �= di−1. Finally, a remark is given to the problem
of whether the upward (right-to-left) regular exponentiation algorithm is
necessary against the original doubling attack and the proposed relative
doubling attack.

Keywords: Chosen-message attack, Cryptography, Doubling attack, Expo-
nentiation, Scalar multiplication, Side-channel attack, Simple power analysis
(SPA), Smart card.

� This work was supported by University IT Research Center Project.



2 Sung-Ming Yen, Lee-Chun Ko, SangJae Moon, and JaeCheol Ha

1 Introduction

Cryptographic hardware devices like smart cards are widely used nowadays. Dur-
ing the past few years many research results have been published on considering
smart card side-channel attacks because of the popular usage of smart cards on
implementing cryptosystems. This new branch of cryptanalysis is usually called
the side-channel attack. The power analysis attack is an important category of
side-channel attack originally pointed out by Kocher [1] in which both simple
power analysis (SPA) and differential power analysis (DPA) were considered.

In a SPA, the attacker observes on one or a few collected power traces of
the smart card executing an algorithm and tries to identify the occurrence of
an instruction execution or a specific operand/data access which are driven by
a part of the private key. Through the above observation, if precise enough, the
private key can be derived. In a DPA, the attacker tries to verify his guess on a
part of the private key by analyzing on only some specific bits of the result of a
specific intermediate step of an algorithm which is a function of the private key.
In order to largely enhance the signal to noise ratio to mount a successful DPA,
it usually collects much more1 power traces than in a SPA and partitions the
power traces into some groups according to the guessed key bits and a underlying
attack design. Difference of the above power traces of different groups is therefore
used to verify the guess on key bits. Usually, a DPA is mounted by analyzing
on many executions of the same algorithm with different random inputs, and
theoretically those inputs will be better if statistically unrelated.

Exponentiation and its analogy, point scalar multiplication on elliptic curve,
are of central importance in modern cryptosystems implementation as they are
of the basic operation of almost all modern public-key cryptosystems, e.g., the
RSA system [2], the ElGamal system [3], and the elliptic curve cryptography [4,
5]. Therefore, many side-channel attacks and also the related countermeasures on
implementing exponentiation and point scalar multiplication have been reported
in the literature.

The square-multiply-always exponentiation (or point scalar multiplication)
algorithm [6] is a well-known SPA countermeasure which exploits a simple and
useful trick to design a regularly executing algorithm by introducing redundant
computation into each loop iteration when necessary. Unfortunately, Fouque and
Valette proposed the doubling attack [7] to threaten the square-multiply-always
algorithm (more precisely, the left-to-right version of the algorithm) by exploiting
the existence of redundant computation in a novel approach.

Joye and Yen proposed an enhanced SPA countermeasure based on the Mont-
gomery ladder [8] which was demonstrated to be also regularly executed but
based on a totally different idea from the original square-multiply-always ex-
ponentiation. The most special thing about the Montgomery ladder is that no
redundant computation exists in the algorithm which is also helpful to be im-
mune from some hardware fault attacks [9, 10].

1 It usually collects a few thousands or more power traces in order to obtain a mean-
ingful average power trace.



Relative Doubling Attack Against Montgomery Ladder 3

However, no research has been reported on whether the Montgomery ladder
can be immune from the doubling attack or any doubling-like attack in the
light of the fact of no redundant computation within the algorithm. The main
contribution of this paper is that a totally different approach of doubling attack
(called the relative doubling attack) is proposed which can successfully threaten
the Montgomery ladder with the same attack assumption as the original doubling
attack. The lesson learned is that redundant computation removing in a regular
exponentiation algorithm may not be sufficient against doubling-like attack.

2 Exponentiation Algorithm and Simple Power Analysis

2.1 Exponentiation Algorithm

In this paper, we consider the problem of computing modular exponentiation.
In the context of RSA private computation (e.g., decryption), we consider the
computation of S = Md mod n where M , d, and n are the input datum, the
private key, and the modulus integer, respectively.

Let
∑m−1

i=0 di 2i be the binary expansion of exponent d. The computation
S = Md mod n needs efficient exponentiation algorithms to speedup its imple-
mentation. Although numerous exponentiation algorithms have been developed
for computing Md mod n (see [11] for a survey), practical solutions for devices
with constrained computation and storage capabilities (e.g., smart cards) are
usually restricted to the basic square-multiply algorithms in Fig. 1 and some
slightly modified ones. The left-to-right (MSB-to-LSB) version in Fig. 1 (a) is
especially preferable to implementations in smart cards because this algorithm
needs only one temporary memory R0 if the input data M is also stored inside
the smart cards.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1
02 for i = m− 1 downto 0 do

03 R0 ← (R0)
2 mod n

04 if (di = 1) then

R0 ← R0 ×M mod n
05 return R0

(a) Left-to-right binary algorithm.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1; R1 ←M
02 for i = 0 to m− 1 do

03 if (di = 1) then

R0 ← R0 ×R1 mod n
04 R1 ← (R1)

2 mod n
05 return R0

(b) Right-to-left binary algorithm.

Fig. 1. Classical binary exponentiation algorithms.

2.2 Simple Power Analysis and Countermeasures

Side-channel attacks are developed based on the fact that in most real implemen-
tations some side-channel information (e.g., timing or power consumption) will



4 Sung-Ming Yen, Lee-Chun Ko, SangJae Moon, and JaeCheol Ha

depend on the private key related instructions being executed and/or the data
being manipulated. Therefore, the side-channel information may be exploited to
mount a successful attack to retrieve the embedded private key, e.g., the private
exponent d in Md mod n.

The classical binary exponentiation algorithm in Fig. 1 (a) includes a con-
ditional branch (i.e., the Step (04)) that is driven by the secret data di. If the
two possible branches behave differently (or the branch decision operation it-
self behaves distinguishably), then some side-channel analysis (e.g., the simple
power analysis–SPA) may be employed to retrieve the secret data di. So, further
enhancement on the algorithms is necessary.

A novel idea of introducing redundant operations and eliminating secret data
dependent statements was proposed previously to enhance the basic algorithms
such that the improved versions behave more regularly. Some square-multiply-
always (or its counterpart called the double-add-always for point scalar multi-
plication) based algorithms were already developed [6] by employing this obser-
vation. Two of these square-multiply-always algorithms are shown in Fig. 2.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1
02 for i = m− 1 downto 0 do

03 b← ¬di

04 R0 ← (R0)
2 mod n

05 Rb ← R0 ×M mod n
06 return R0

(a) SPA-protected left-to-right
algorithm.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1; R2 ←M
02 for i = 0 to m− 1 do

03 b← ¬di

04 Rb ← R0 ×R2 mod n
05 R2 ← (R2)

2 mod n
06 return R0

(b) SPA-protected right-to-left
algorithm.

Fig. 2. SPA-protected square-multiply-always countermeasures.

2.3 Doubling Attack

The doubling attack2 [7] is a special category of SPA with chosen message as-
sumption and it has been shown to be useful to thwart the well-known SPA-
protected left-to-right (downward) square-multiply-always countermeasure (see
Fig. 2 (a)). The main idea is to choose two strongly related inputs M and
M2 mod n (so being a chosen-message attack) and to observe the collision of
two computations for M2(2x+di) mod n and M4x mod n if di = 0. In the dou-
bling attack, even if the attacker cannot decide whether a computation being
performed is squaring or multiplication, the attacker can still detect collision of
two operations (basically the squaring operation) within two related computa-
tions. More precisely, for two computations A2 mod n and B2 mod n, even if the
2 It can also be called the squaring attack for the scenario of exponentiation.



Relative Doubling Attack Against Montgomery Ladder 5

attacker cannot tell the values of A and/or B, however the attacker can detect
the collision if A = B.

The following example given in Table 1 provides the details of the doubling
attack. Let the private exponent d be 75 = (1, 0, 0, 1, 0, 1, 1)2 and the two related
input data be M and M2, respectively. The computational process of raising Md

and (M2)d using the left-to-right square-multiply-always algorithm reveals the
fact that if di = 0, then both the first computations (both are squarings) of
iteration3 i − 1 for Md and iteration i for (M2)d will be exactly the same. So,
observing collisions (observation on the existence of same instruction with same
operand) within computations of two collected power consumption traces enables
the attacker to identify all private key bits of zero value except the LSB of d. In
the scenario of RSA private computation, it is assumed that d0 = 1.

The assumption made (was claimed in [7] to be correct by experiment) is
very reasonable since the target computations usually take many machine clock
cycles (thus more easy to measure and to observe) and depend greatly on the
operands, so the collision is more easy to detect.

Table 1. Computations of Md and (M2)d in the square-multiply-always algorithm.

i di Process of Md Process of (M2)d

6 1 12 12

1 × M 1 × M2

5 0 M2 (M2)2

M2 × M M4 × M2

4 0 (M2)2 (M4)2

M4 × M M8 × M2

3 1 (M4)2 (M8)2

M8 × M M16 × M2

2 0 (M9)2 (M18)2

M18 × M M36 × M2

1 1 (M18)2 (M36)2

M36 × M M72 × M2

0 1 (M37)2 (M74)2

M74 × M M148 × M2

Return M75 M150

2.4 Montgomery Ladder as Enhanced Countermeasure Against
SPA

Montgomery ladder is originally due to Peter Montgomery [12] as a means to
speed up scalar multiplication in the context of elliptic curves. It has been re-
discovered in [13] in another context and applied to Lucas sequences.

In [8], an exponentiation algorithm based on Montgomery ladder was con-
sidered such that it can resist some side-channel attacks, e.g., SPA and timing
3 Here, the iteration number is denoted decreasingly from m − 1 downward towards

zero.



6 Sung-Ming Yen, Lee-Chun Ko, SangJae Moon, and JaeCheol Ha

attack, and also the safe-error attacks [9, 10] (a category of hardware fault at-
tack). The algorithm is given in Fig. 3. This algorithm is only SPA resistant and
is used to simplify the description of the proposed attack. However, an enhanced
version in [8] meant to be immune from the safe-error attacks with Step 04 re-
placed by (Rb ← Rb × Rdi mod n) is still vulnerable to the relative doubling
attack proposed in this paper.

It is evident that the Montgomery ladder (and its enhanced version) behave
regularly and most specially that there is no redundant computation within the
algorithm.

Input: M, d = (dm−1 · · · d0)2, n

Output: Md mod n

01 R0 ← 1; R1 ←M
02 for i = m− 1 downto 0 do

03 b← ¬di

04 Rb ← R0 ×R1 mod n
05 Rdi ← (Rdi)

2 mod n
06 return R0

Fig. 3. SPA-protected Montgomery ladder.

3 The Proposed Attack

3.1 Attack Assumption

The assumption made in this paper is basically the same as what considered in
the doubling attack [7] and that in an attack reported in [14]. The assumption
is that an adversary can distinguish collision of power trace segments (within
a single or more power traces) when the smart card performs twice the same
computation even if the adversary is not able to tell which exact computation
is done. The collision instance to be distinguished in [7] and in our proposed
attack is the modular squaring computation. An adversary is assumed to be
able to detect the collision of A2 mod n and B2 mod n if A = B even though A
and B are unknown.

3.2 Relative Doubling Attack on Montgomery Ladder

Let
∑m−1

j=0 dj 2j be the binary expansion of the exponent d. The Montgomery
ladder (see Fig. 3) was designed based on the following observation [8]. Let
Li =

∑m−1
j=i dj 2j−i and Hi = Li + 1, then we have

Li = 2Li+1 + di = Li+1 + Hi+1 − 1 + di,



Relative Doubling Attack Against Montgomery Ladder 7

Hi = Li+1 + Hi+1 + di = 2Hi+1 − 1 + di.

Based on the above observation, we obtain

(Li, Hi) =
{

(2Li+1, Li+1 + Hi+1) if di = 0 ,
(Li+1 + Hi+1, 2Hi+1) if di = 1 . (1)

In the algorithm (Fig. 3), the register R0 is used to store the value of MLi and
the register R1 is used to store MHi . In order to develop an execution regular
and SPA immune algorithm, the operations of Step 04 and Step 05 are designed
to be as follows

(R1 = MHi , R0 = MLi) =
(
MLi+1 ×MHi+1 , (MLi+1)2

)
if di = 0, (2)

and

(R0 = MLi, R1 = MHi) =
(
MLi+1 ×MHi+1 , (MHi+1)2

)
if di = 1. (3)

The above statements clearly demonstrate that the Montgomery ladder ex-
ecutes highly regular and there is no redundant computation within the algo-
rithm. Whatever the processed bit di, there is always a multiplication followed
by a squaring. On the contrary, we want to emphasize that in the left-to-right
square-multiply-always algorithm (see Fig. 2 (a)), redundant computation (i.e.,
Step 05: Rb ← R0 ×M mod n) does exist when di = 0. The original doubling
attack on the algorithm in Fig. 2 (a) exploits the existence of this redundant
computation.

However, no research has been reported on whether the Montgomery ladder
can be immune from the doubling attack or any doubling-like attack in the light
of the fact of no redundant computation within the algorithm. A straightforward
result can be obtained easily is that the original doubling attack does not apply
to the Montgomery ladder. However, the following result will show that another
doubling-like attack can still be applicable to the Montgomery ladder.

Fact 1 Given di = 0, then we have Li = 2Li+1.

Proof. This can be obtained directly from the definition of Li =
∑m−1

j=i dj 2j−i

since di = 0. ��
Fact 2 Given di = 1, then we have Hi = 2Hi+1.

Proof. From the definitions of Li =
∑m−1

j=i dj 2j−i, Hi = Li +1, and also di = 1,
we have Hi = Li + 1 = (2Li+1 + 1) + 1 = 2(Li+1 + 1) = 2Hi+1. ��

From Eq.(2), we understand that if di = di−1 = 0 then both{
R0 ← (MLi)2 : Step 05 of iteration i− 1 when evaluating Md

R0 ← ((M2)Li+1)2 : Step 05 of iteration i when evaluating (M2)d,
(4)

will perform the same computation because of Li = 2Li+1 (see Fact 1). Due to
this observation of collision on computation, a new doubling-like attack can be
mounted to derive the knowledge of di = di−1 = 0.



8 Sung-Ming Yen, Lee-Chun Ko, SangJae Moon, and JaeCheol Ha

On the other hand, from Eq.(3), we also observe that if di = di−1 = 1 then
both{

R1 ← (MHi)2 : Step 05 of iteration i− 1 when evaluating Md

R1 ← ((M2)Hi+1)2 : Step 05 of iteration i when evaluating (M2)d,
(5)

will perform the same computation because of Hi = 2Hi+1 (see Fact 2). This
observation of collision on computation leads to the knowledge of di = di−1 = 1.

All other cases, say di �= di−1, will lead to either one of the following results

case (1): di = 0 and di−1 = 1{
R1 ← (MHi)2 : Step 05 of iteration i− 1 when evaluating Md

R0 ← ((M2)Li+1)2 : Step 05 of iteration i when evaluating (M2)d,
(6)

case (2): di = 1 and di−1 = 0{
R0 ← (MLi)2 : Step 05 of iteration i− 1 when evaluating Md

R1 ← ((M2)Hi+1)2 : Step 05 of iteration i when evaluating (M2)d.
(7)

Based on the definition of Montgomery ladder, it is evident that in the case
(1) we have Hi �= 2Li+1 and no collision of computation can be detected.
Similarly, in the case (2) no collision of computation can be detected since
Li �= 2Hi+1.

The Relative Doubling Attack. Recall that collision of two computations
will not reveal the value of the operand. So, in the proposed attack, a collision
of computations detected by the property of Eq.(4) and another collision of
computations detected by the property of Eq.(5) cannot be distinguished. The
only knowledge obtained is that di = di−1 if a collision is detected. On the other
hand, the properties in Eq.(6) and Eq.(7) tell us that di �= di−1 if no collision
is detected. Due to its special property of the derived knowledge, the proposed
attack is called the relative doubling attack to manifest the difference to the
original doubling attack [7].

Based on the derived relationship between every two adjacent private key bits
(either di = di−1 or di �= di−1) and a given bit (e.g., d0 or dm−1), all other private
key bits can be derived uniquely. For example, in RSA private computation it is
assumed that d0 = 1 under the same assumption made in the original doubling
attack mentioned previously. Most importantly, we observed that it is sufficient
to derive all the private key bits when given any di (0 ≤ i ≤ m− 1).

An Example of Attack. Following the same example of assuming the private
exponent d to be 75 = (1, 0, 0, 1, 0, 1, 1)2 and the two related input data to be
M and M2 respectively, Table 2 provides the details of the proposed relative
doubling attack on Montgomery ladder. The computational process of raising
Md and (M2)d reveals the fact that given4 d0 = 1 and the observation of collision
4 The RSA private exponent d is an odd integer. The original doubling attack also

exploits this knowledge in order to obtain d0.



Relative Doubling Attack Against Montgomery Ladder 9

on Step 05 of the iteration 1 of (M2)d and Step 05 of the iteration 0 of Md will
lead to the result of d1 = d0 = 1. Given d0 = 1, if no collision is detected, then
d1 = 0 since in this case d1 should be different from d0.

Table 2. Computations of Md and (M2)d in the Montgomery ladder.

i di Process of Md Process of (M2)d

6 1 R0 = 1 × M R0 = 1 × M2

R1 = M2 R1 = (M2)2

5 0 R1 = M2 × M R1 = M4 × M2

R0 = M2 R0 = (M2)2

4 0 R1 = M3 × M2 R1 = M6 × M4

R0 = (M2)2 R0 = (M4)2

3 1 R0 = M4 × M5 R0 = M8 × M10

R1 = (M5)2 R1 = (M10)2

2 0 R1 = M10 × M9 R1 = M20 × M18

R0 = (M9)2 R0 = (M18)2

1 1 R0 = M18 × M19 R0 = M36 × M38

R1 = (M19)2 R1 = (M38)2

0 1 R0 = M37 × M38 R0 = M74 × M76

R1 = (M38)2 R1 = (M76)2

Return R0 = M75 R0 = M150

3.3 Comparison of Doubling Attack and Relative Doubling Attack

The original doubling attack (against square-multiply-always algorithm) focuses
on deriving the private key bit di by checking whether di = 0. So, the original
doubling attack tries to obtain the knowledge of absolute value of each di. On
the contrary, the proposed relative doubling attack (against Montgomery ladder)
focuses on deriving the knowledge of whether di = di−1 (relationship between
every two adjacent key bits), but not the knowledge of either di or di−1 directly.
Nonetheless, given the value of either di or di−1 will provide the exact value of
the other one indirectly.

Furthermore, the original doubling attack fully exploits the existence of re-
dundant computation. But the proposed relative doubling attack on the Mont-
gomery ladder does not exploit the existence of any redundant computation.
Evidently, in this paper, we showed a totally different approach of deriving the
private key. The primary similarity of these two attacks is that both of them use
(M, M2) as the chosen input data.

3.4 Applicability of The Proposed Attack

Most published research results on side-channel attack considered the potential
vulnerability on the computational algorithm (e.g., modular exponentiation) but
not on a real cryptosystem and under a specific cryptographic standard (e.g.,
some padding or message format). This is basically reasonable since the com-
putational algorithm itself is generic and can be employed as implementation



10 Sung-Ming Yen, Lee-Chun Ko, SangJae Moon, and JaeCheol Ha

to many different cryptosystems (or some cryptosystems to be designed in the
future) each may have different padding or message format. So, to point out
potential attacks to the computational algorithm is still important.

Nonetheless, we still wish to point out clearly that the proposed relative
doubling attack is applicable at least to the following systems if they are imple-
mented based on the Montgomery ladder or its enhanced version in [8].

(1) Traditional textbook RSA decryption and signature.
(2) The RSA-OAEP decryption [15, 16]. It should be noted that the proposed

attack does work on RSA-OAEP decryption since the ciphertext validity
checking is performed after the RSA private exponentiation computation.
So, the attacker still can collect the necessary power traces.

(3) ElGamal decryption [3].

4 Possible Enhancement Against Relative Doubling
Attack

4.1 Remarks on Random Blinding Technique

One may argue that the standard blinding technique can easily prevent the
proposed relative doubling as well as the original doubling attacks. However, we
have some remarks on this claim.

The first disagreement is that the standard blinding technique is well known
as a countermeasure against DPA. The second disagreement is that in a standard
blinding technique the input data should be protected by a random mask which
will then be removed from the result. However, it has been pointed out clearly in
[7] that a regular mask updating (meant to be efficient), e.g., the one mentioned
in [6], will be vulnerable to the doubling attack. It can be verified easily that the
regular mask updating in [6] is also vulnerable to the proposed relative doubling
attack. It was suggested eventually that it had better use a real random mask
to avoid the attack. Unfortunately, the computational overhead of employing a
real random mask is usually very high.

4.2 Is Upward Exponentiation Necessary Against Doubling Attack

The work and especially the title of [7] imply that upward (right-to-left) expo-
nentiation could be better than downward (left-to-right) exponentiation when
considering vulnerability from the doubling attack. This is also the case for the
proposed relative doubling attack. However, the above mentioned superiority of
the upward exponentiation is not obtained without any additional cost. It is evi-
dent that the upward square-multiply-always exponentiation in Fig. 2 (b) needs
one more temporary memory than the downward exponentiation does.

Purpose of the following discussion is to clarify that upward exponentiation
is not a necessary requirement meant to be immune from the doubling attack
and the proposed relative doubling attack. The following SPA-protected and



Relative Doubling Attack Against Montgomery Ladder 11

safe-error-protected exponentiation algorithm [17] in Fig. 4 is a downward expo-
nentiation algorithm. A limitation of this algorithm is that dm−1 = 1 is assumed.
It can be verified easily that this algorithm is secure against the doubling and
the relative doubling attacks.

Input: M, d = (dm−1, dm−2 · · · d0)2, dm−1=1, n

Output: Md mod n

01 R0 ← 1; R1 ←M; d−1 ← 1
02 for i = m− 1 downto 0 do

03 b← ¬di; c← di−1

04 R0 ← R0 ×Rb mod n
05 R0 ← R0 ×Rc mod n
06 return R0

Fig. 4. SPA-protected and safe-error-protected downward exponentiation.

Notice that the algorithm (Fig. 4) needs only two temporary memory (same
as that in Fig. 2 (a)) and this leads to one less temporary memory requirement
than the doubling attack immune upward algorithm in Fig. 2 (b). Recall that
if we take into account the fact that the input datum M is also stored inside
the smart card (as already described previously), then the algorithm in Fig. 4
needs only one temporary memory which leads to two less temporary memory
requirement than the doubling attack immune upward algorithm in Fig. 2 (b).
However, it is worth noting that protection against relative doubling attack does
not necessarily ward off other potential attacks.

5 Conclusions

The Montgomery ladder can be secure against both the ordinary SPA and the
ordinary doubling attack. But, in this paper we showed that the Montgomery
ladder is vulnerable to the proposed relative doubling attack. Both the ordi-
nary doubling attack and the proposed relative doubling attack share the same
reasonable attack assumption of observing collision on computations. One differ-
ence is that the original doubling attack (against square-multiply-always algo-
rithm) fully exploits the existence of redundant computation, while the proposed
relative doubling attack (against Montgomery ladder) does not exploit any re-
dundant computation. Our relative doubling attack uses a different approach to
derive the private key.

6 Acknowledgment

The authors would like to thank the anonymous reviewers for their helpful sug-
gestions and comments on both technical and editing issues. These suggestions
improve extensively to the final version of this paper.



12 Sung-Ming Yen, Lee-Chun Ko, SangJae Moon, and JaeCheol Ha

References

1. P. Kocher, J. Jaffe and B. Jun, “Differential power analysis,” Advances in Cryptol-
ogy – CRYPTO ’99, LNCS 1666, pp. 388–397, Springer-Verlag, 1999.

2. R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystem,” Commun. of ACM, vol. 21, no. 2, pp. 120–126, 1978.

3. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–472, 1985.

4. V. Miller, “Uses of elliptic curve in cryptography,” Advances in Cryptology –
CRYPTO ’85, LNCS 218, pp. 417–426, Springer-Verlag, 1985.

5. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48,
no. 177, pp. 203–209, Jan. 1987.

6. J.-S. Coron, “Resistance against differential power analysis for elliptic curve cryp-
tosystems,” Proc. of Cryptographic Hardware and Embedded Systems – CHES ’99,
LNCS 1717, pp. 292–302, Springer-Verlag, 1999.

7. P.-A. Fouque and F. Valette, “The doubling attack – why upwards is better than
downwards,” Proc. of Cryptographic Hardware and Embedded Systems – CHES ’03,
LNCS 2779, pp. 269–280, Springer-Verlag, 2003.

8. M. Joye and S.M. Yen., “The Montgomery powering ladder,” Proc. of Cryptographic
Hardware and Embedded Systems – CHES ’02, LNCS 2523, pp. 291–302, Springer-
Verlag, 2003.

9. S. M. Yen and M. Joye, “Checking Before Output May Not be Enough against
Fault-Based Cryptanalysis,” IEEE Trans. on Computers, 49(9):967-970, September
2000.

10. S.M. Yen, S.J. Kim, S.G. Lim and S.J. Moon, “A countermeasure against one
physical cryptanalysis may benefit another attack,” Proc. of Information Security
and Cryptology – ICISC ’01, LNCS 2288, pp. 414–427, Springer-Verlag, 2002.

11. D.M. Gordon, “A survey of fast exponentiation methods,” Journal of Algorithms,
vol. 27, pp. 129–146, 1998.

12. P.L. Montgomery, “Speeding the Pollard and elliptic curve methods of factoriza-
tion,” Mathematics of Computation, vol. 48, no. 177, pp. 243–264, Jan. 1987.

13. S.M. Yen and C.S. Laih, “Fast algorithms for LUC digital signature computation,”
IEE Proc. Computers and Digital Techniques, vol. 142, no. 2, pp. 165–169, March
1995.

14. K. Schramm, T. Wollinger, and C. Paar, “A new class of collision attacks and its
application to DES,” Proc. of Fast Software Encryption – FSE ’03, LNCS 2887,
pp. 206–222, Springer-Verlag, 2003.

15. PKCS #1 v2.1, “RSA Cryptography Standard”, 5 January 2001.
http://www.rsasecurity.com/rsalabs/pkcs/

16. M. Bellare and P. Rogaway, “Optimal asymmetric encryption padding – How to en-
crypt with RSA,” Advances in Cryptology – EUROCRYPT ’94, LNCS 950, pp. 92–
111, Springer-Verlag, 1995.

17. S.M. Yen, C.C. Lu, and S.Y. Tseng, “Method for protecting public key schemes
from timing, power and fault attacks,” U.S. Patent Number US2004/0125950 A1,
July 2004.


