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Abstract. In this paper, we will point out a new side-channel vul-
nerability of cryptosystems implementation based on BRIP or square-
multiply-always algorithm by exploiting specially chosen input message
of order two. A recently published countermeasure, BRIP, against con-
ventional simple power analysis (SPA) and differential power analysis
(DPA) will be shown to be vulnerable to the proposed SPA in this paper.
Another well known SPA countermeasure, the square-multiply-always al-
gorithm, will also be shown to be vulnerable to this new attack. Further
extension of the proposed attack is possible to develop more powerful
attacks.

Keywords: Chosen-message attack, Cryptography, Side-channel attack,
Simple power analysis (SPA), Smart card.

1 Introduction

During the past few years many research results have been published on con-
sidering smart card side-channel attacks because of the popular usage of smart
cards on implementing cryptosystems. This new branch of cryptanalysis is usu-
ally called the side-channel attack (SCA).

The power analysis attack is an important category of SCA originally pub-
lished by Kocher [1] in which both simple power analysis (SPA) and differential
power analysis (DPA) were considered. SPA tries to extract the private key by
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observing on a single or a very few number of power consumption traces collected
from the smart card. DPA consists in performing a statistical analysis of many
power consumption traces (say a few thousands or more) of the same algorithm
with different inputs.

Exponentiation and its analogy, point scalar multiplication on elliptic curve,
are of central importance in modern cryptosystems implementation as they are of
the basic operation of almost all modern public-key cryptosystems, e.g., the RSA
system [2] and the elliptic curve cryptography [3,4]. Therefore, many side-channel
attacks and also the related countermeasures on implementing exponentiation
and point scalar multiplication have been reported in the literature.

Some recent works of power analysis attack, e.g., refined power analysis
(RPA) [5], zero-value point attack (ZPA) [6], and doubling attack [7], threaten
most existing countermeasures for implementing exponentiation and point scalar
multiplication, e.g., some countermeasures in [8]. Recently, Mamiya et al pro-
posed an enhanced countermeasure which was claimed to resist against RPA,
ZPA, classical DPA and SPA, and also doubling attack by introducing a new
random blinding technique and also exploiting a well known regular program
execution trick (say the square-multiply-always like approach) for each loop it-
eration.

The main contribution of this paper is that a new SPA by exploiting specific
chosen message is proposed in which collecting a single power trace is sufficient
to mount a successful attack. An important result obtained is that both the
well known SPA resistant countermeasure by using the square-multiply-always
algorithm [8] and also the recent and enhanced BRIP algorithm [9] are shown
to be vulnerable to this new attack. Further extension on the attack is also
pointed out by selecting more general and random input messages which makes
the detection of a specific message employed in the basic attack be infeasible
and this leads to a more powerful extended attack. Furthermore, the proposed
attack is also applicable to implementation of RSA with CRT speedup. Another
important observation is that cryptographic padding (e.g., RSA-OAEP [10,11])
is not always useful against simple power attack.

2 Preliminary and Related Works

In this paper, we consider the problem of computing modular exponentiation. In
the context of RSA private computation (for example, generating a digital signa-
ture or ciphertext decryption), we consider the computation of S = Md mod n
where M , d, and n are the input message, the private key, and the modulus
integer, respectively.

2.1 Exponentiation Algorithm

Let
∑m−1

i=0 di 2i be the binary expansion of exponent d. The computation
S = Md mod n needs efficient exponentiation algorithms to speedup its
implementation.
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Although numerous exponentiation algorithms have been developed for com-
puting Md mod n, practical solutions for devices with constraint computation
and storage capabilities (e.g., smart cards) are usually restricted to the basic
square-multiply algorithm (refer to Fig. 1 for the left-to-right/MSB-to-LSB ver-
sion) and some slightly modified ones. The exponentiation algorithm in Fig. 1
processes the bits of the exponent d from the most significant bit (MSB) towards
the least significant bit (LSB). An LSB-to-MSB counterpart of the algorithm in
Fig. 1 can be available from most related literature.

INPUT: M, d = (dm−1 · · · d0)2, n

OUTPUT: Md mod n

01 T = 1
02 for i from (m − 1) downto 0 do

03 T = T 2 mod n
04 if (di = 1) then T = T × M mod n
05 return T

Fig. 1. Classical left-to-right exponentiation algorithm

2.2 Side-Channel Attacks and Countermeasures

Side-channel attacks are developed based on the fact that in most real implemen-
tations some side-channel information (e.g., timing or power consumption) will
depend on the instructions being executed and/or the data being manipulated.
Therefore, the side-channel information may be exploited to mount a success-
ful attack to retrieve the embedded private key, e.g., the private exponent d in
Md mod n.

The classical binary exponentiation algorithm in Fig. 1 includes a condi-
tional branch (i.e., the Step (04)) that is driven by the secret data di. If the
two possible branches behave differently (or the branch decision operation it-
self behaves distinguishably), then some side-channel analysis (e.g., the simple
power analysis–SPA) may be employed to retrieve the secret data di. So, further
enhancement on the algorithm is necessary.

A novel idea of introducing dummy operations and eliminating secret data
dependent statements was proposed previously to enhance the basic algorithms
such that the improved versions behave more regularly. Some square-multiply-
always (or its counterpart called the double-add-always for point scalar multipli-
cation) based algorithms were already developed (refer to the well known one in
Fig. 2 [8] and a recent improvement in Fig. 3 [9]) by employing this observation.

2.3 Doubling Attack

The doubling attack [7] (or called squaring attack for the scenario of exponenti-
ation) is an SPA-based attack which works on the left-to-right square-multiply-
always countermeasure (see Fig. 2). The main idea is simply to choose two
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INPUT: M, d = (dm−1 · · · d0)2, n

OUTPUT: Md mod n

01 T = 1
02 for i from (m − 1) downto 0 do

03 T0 = T 2 mod n
04 T1 = T0 × M mod n
05 T = Tdi

06 return T

Fig. 2. (SPA protected) Square-multiply-always countermeasure

INPUT: M, d = (dm−1 · · · d0)2, n

OUTPUT: Md mod n

01 select a random integer R
02 T0 = R; T1 = R−1 mod n; T2 = M × R−1 mod n
03 for i from (m − 1) downto 0 do

04 T0 = T 2
0 mod n

05 if (di = 0) then T0 = T0 × T1 mod n
06 else T0 = T0 × T2 mod n
07 return T0 × T1 mod n

Fig. 3. BRIP countermeasure for exponentiation

strongly related inputs M and M2 (so being a chosen-message attack) and to
observe the collision of two computations for M2(2x+di) mod n and M4x mod n
if di = 0. In the doubling attack, even if the attacker cannot decide whether
a computation being performed is squaring or multiplication, the attacker can
still detect collision of two operations (basically the squaring operation) within
two related computations. More precisely, for two computations A2 mod n and
B2 mod n, even if the attack cannot tell the values of A and/or B, however the
attacker can detect the collision if A = B.

The following example given in Table 1 provides the details of the doubling
attack. Let the private exponent d be 79 = (1, 0, 0, 1, 1, 1, 1)2 and the two related
input messages be M and M2, respectively. The computational process of raising
Md and (M2)d using the left-to-right square-multiply-always algorithm reveals
the fact that if di = 0, then both the first computations (both are squarings)
of iteration1 i − 1 for Md and iteration i for (M2)d will be exactly the same.
So, observing collisions within computation on two collected power consumption
traces enables the attacker to identify all private key bits of zero value.

The assumption made (was claimed in [7] to be correct experimentally) is
very reasonable since the target computations usually take many machine clock
cycles and depend greatly on the operands, so the collision is more easy to detect.

1 Here, the iteration number is denoted decreasingly from m − 1 downward toward
zero.
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Table 1. Computations of Md and (M2)d in the square-multiply-always algorithm

i di Process of Md Process of (M2)d

6 1 12 12

1 × M 1 × M2

5 0 M2 (M2)2

M2 × M M4 × M2

4 0 (M2)2 (M4)2

M4 × M M8 × M2

3 1 (M4)2 (M8)2

M8 × M M16 × M2

2 1 (M9)2 (M18)2

M18 × M M36 × M2

1 1 (M19)2 (M38)2

M38 × M M76 × M2

0 1 (M39)2 (M78)2

M78 × M M156 × M2

Return M79 M158

To protect against the above doubling attack, the random message blinding
(RMB) technique should be employed. The RMB technique blinds the original
message M to M × R mod n before being signed with a random mask R, and
removes a blinding factor (Rd)−1 mod n from the result to obtain the signature
S by computing Md = (M × R)d × (Rd)−1 mod n.

However, it has been shown in [7] that a regular (in order to be efficient)
mask updating, e.g., by Ri = R2

i−1 mod n mentioned in [8], might be vulnerable
to the doubling attack. So, it was suggested that a real random masking can be
employed to avoid the attack.

2.4 The BRIP Countermeasure

Randomized exponentiation algorithms were recently considered as effective
countermeasures against DPA by introducing randomization onto the input mes-
sage or into the computational process of the algorithm in order to remove cor-
relation between the private key and the collected power traces. One of such
countermeasures is the BRIP algorithm [9] shown in Fig. 3 (it means binary
expansion with random initial point/value) in which the input RSA message is
blinded by multiplying with a random integer R−1 mod n.

It was claimed in [9] that the BRIP algorithm can be secure against SPA2

since there will always be two operations in each iteration, i.e., the Step (04)
and one of either the Step (05) or the Step (06).

2 Of course, the version given in Fig. 3 needs some slight modification (mostly on using
well known register indexing trick) to make it be truly SPA resistant. However, this
version is sufficient for demonstration purpose.
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Remarks. BRIP was originally proposed for ECC context to protect against
RPA which requires an inversion for the computation. However, BRIP’s authors
say that their algorithm can also be applied in Zn for cryptosystems based on
integer factorization or discrete logarithm. In fact, BRIP can also work efficiently
for the above systems if an efficient and secure (against related side-channel
attacks, especially the doubling-like attack) random message blinding update
process for {Ri, R

−1
i } can be developed.

3 The Proposed Attack

In the following, an SPA by exploiting chosen input data will be pointed out
which is generic and can be extended to some related attacks that will be de-
scribed in this paper.

3.1 Attack Assumption

The assumption made in this paper is basically the same as what considered in
the doubling attack [7] and that in an attack reported in [12]. The validity and
practicality of the employed attack assumption was claimed in [7] to be correct
by experiment3.

The assumption is that an adversary can distinguish collision of power trace
segments (within a single or more power traces) when the smart card performs
twice the same operation even if the adversary is not able to tell which exact
computation is done.

Examples of collision instances to be distinguished include modular squaring
and modular multiplication. For example, an adversary is assumed to be able to
detect the collision of A2 mod n and B2 mod n if A = B even though A and B
are unknown.

3.2 Attack on the Square-Multiply-Always Algorithm

In the context of RSA system, given the modulus n, we observed that (n−1)2 ≡ 1
(mod n). This observation can be extended to obtain (n − 1)j ≡ 1 (mod n) for
any even integer j and (n − 1)k ≡ n − 1 (mod n) for any odd integer k.

Given M = n − 1, the square-multiply-always exponentiation algorithm in
Fig.2 will have T = (n− 1)(dm−1···di)2 mod n after the Step (05) of iteration i. If
T = 1, then (dm−1 · · · di)2 is an even integer and di = 0. Otherwise, T = n − 1
and (dm−1 · · ·di)2 is an odd integer and di = 1.

By observing on a single collected power trace of performing the algorithm
in Fig.2, the attacker can try to identify the value of T (it can only be either 1 or
n−1) at the end of each iteration and to conduct the aforementioned derivation
of each di. The approach used to identify the value of di is by SPA shown below.
Given the two possible values of T at the end of iteration i, there will be only

3 So, we did not perform another experiment.
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two possible computations of the iteration (i−1) shown below and which can be
identified by using SPA. In the following statements, the symbol x → y means
that the result of computation x will be assigned to the register y.

– if di = 0, Step (03) of the iteration (i − 1) performs:
12 mod n → T0;

– if di = 1, Step (03) of the iteration (i − 1) performs:
(n − 1)2 mod n → T0.

Notice that there are only two possible candidate computations of the Step
(03). So, during the attack, it does not need to know exactly which of the two
observed power consumption patterns of the Step (03) matches with the com-
putation of (n − 1)2 mod n (or 12 mod n). Only two possible private keys d’s
will be derived and a trial-and-error approach can be used to select the correct
d among the two possibilities. For example, if the MSB of d is presumed to be
one, then one of the two possible d’s can be selected easily.

All the private key bits can be derived except d0 by the above SPA. However,
d0 can be known by detecting whether the final result is T = 1. On the other
hand, in the context of RSA, d0 is always binary one. Notice that this new SPA
is much easier to mount than in the case of a conventional one (to attack the
algorithm in Fig. 1) since now the square-multiply-always algorithm performs
regularly such that each iteration has one modular squaring followed by a mod-
ular multiplication. Therefore, given a collected power trace, it would be much
easier to identify the beginning and the end4 of all iterations and this benefits
the proposed new SPA.

Interestingly, a countermeasure originally developed to be resistant to SPA
is unfortunately more vulnerable to a new SPA which is much easier to mount
compared to the conventional SPA.

3.3 Attack on the BRIP Algorithm

It is interesting to note that the randomized version of square-multiply-always
exponentiation in Fig. 3, the BRIP algorithm, is also vulnerable to the above
proposed SPA. In the BRIP countermeasure, given M = n− 1, we observe that
at the end of iteration i:

– if di = 0: after the Step (05), T0 = (n − 1)(dm−1···di)2 × R = R mod n,
– otherwise if di = 1: after the Step (06), T0 = (n − 1)(dm−1···di)2 × R =

(n − 1) × R mod n.

Based on the proposed chosen-message SPA, by observing on a single col-
lected power trace, the attacker can try to identify the value of T0 at the end of
each iteration i in order to derive di. Given the two possible values of T0 at the
end of iteration i, there will be only two possible computations (shown below)
of the iteration (i − 1) which can be identified by using SPA.
4 Actually, the computation of the second part (say the Step (04)) of each iteration

under the proposed chosen-message SPA are the same, i.e., 1 × (n − 1) mod n. This
collision helps to identify the end of each iteration.
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– if di = 0, Step (04) of the iteration (i − 1) performs:
R2 mod n → T0;

– if di = 1, Step (04) of the iteration (i − 1) performs:
((n − 1) × R)2 mod n → T0.

In the above approach of SPA, all the private key bits can be derived except
d0. Similarly, d0 can usually be obtained easily by some other approaches, and
for RSA the value of d0 is known to be one.

It is very important to notice that no matter what the value of R will be,
the proposed SPA is applicable. Evidently, the initial random message blinding
technique (at the Step (02)) proposed in the BRIP is not resistant against the
proposed attack.

Another approach to mount the chosen-message SPA on the BRIP is possible
and is shown below. Since there are only two possible input values of T0 (either
R or (n− 1)R mod n) at the beginning of each iteration i, it is always true that
T0 = R2 mod n when finishing the Step (04). After that, one of the two possible
modular multiplications (Step (05) or Step (06)) will be performed depending
on the value of di.

– if di = 0, Step (05) of the iteration i performs:
R2 × R−1 mod n → T0;

– if di = 1, Step (06) of the iteration i performs:
R2 × ((n − 1)R−1) mod n → T0.

The same that the above attack is applicable no matter what the value of R
will be. Hence, the initial random message blinding technique at the Step (02)
is still in vain.

3.4 Applicability of the Attack

The proposed attack is applicable to the cases where element of order 2 exists
or in any case (−1)k is computed in prime-order cases. So, the proposed attack
now works against

– traditional textbook RSA decryption and signature
– RSA-OAEP decryption [10,11]
– ElGamal decryption [13]

when they are implemented based on the square-multiply-always or the BRIP
algorithms. An interesting and important point to observe is that cryptographic
padding (e.g., currently used RSA-OAEP) is not always useful against simple
power attack. However, the proposed attack does work on RSA-OAEP decryp-
tion since the ciphertext validity checking is performed after the RSA private
exponentiation computation. So, the attacker still can collect the necessary power
trace(s).

But, the proposed attack does not work against the following systems
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– most discrete logarithm based signature schemes
– elliptic curve discrete logarithm based decryption and signature (since ECC

is usually implemented on the prime-order elliptic curves and there is no
element with order 2)

– RSA signature with hash function and/or cryptographic padding.

4 Extension of the Proposed Attack

4.1 Extension to RSA with CRT

In the RSA cryptosystem, let the public modulus be n = p × q which is the
product of two secret prime integers p and q each with roughly |n|/2 bits5.
Prime factorization of the public modulus n can totally break the system.

The well known Chinese Remainder Theorem (CRT) technique [14,15] can
be used to speedup the RSA private computation extensively, e.g., the RSA
signature computation S = Md mod n. In the RSA with CRT, we compute
Sp = M

dp
p mod p and Sq = M

dq
q mod q, where Mp = M mod p, Mq = M mod q,

dp = d mod (p − 1), and dq = d mod (q − 1). Finally, the signature is computed
by using the following Gauss’s [14, p.68] (or other more efficient alternative)
recombination algorithm

S = (Sp × q × (q−1 mod p) + Sq × p × (p−1 mod q)) mod n

where both q−1 mod p and p−1 mod q can be precomputed.
Basically, RSA with CRT is about four times faster than the straightforward

approach to compute S directly in terms of bit operations. This CRT-based
speedup for RSA private computation has been widely adopted in most systems,
especially for implementations with smart card. In the following, we will show
that the proposed SPA with chosen message is generic and can be applicable to
the RSA with CRT even if the adversary does not know the secret prime integers
p and q in advance.

In the attack, the adversary tries to derive dp (or dq) during the computation
of M

dp
p mod p (or M

dq
q mod q). The adversary provides the chosen message M =

n − 1 to the smart card and observes on the computation of Sp = M
dp
p mod

p under the implementation of left-to-right square-multiply-always algorithm
where Mp = (n − 1) mod p.

We observed that (n − 1)2 ≡ 1 (mod n) leads to M2
p ≡ 1 (mod p) (and

M2
q ≡ 1 (mod q)) where Mp = (n − 1) mod p (and Mq = (n − 1) mod p). The

above observation can be extended to obtain M j
p ≡ 1 (mod p) for any even

integer j and Mk
p ≡ Mp (mod p) for any odd integer k.

The square-multiply-always algorithm in Fig.2 will have T = M
(dp,�−1···dp,i)2
p

mod p (where � = |dp|) after the Step (05) of iteration i. If T = 1, then
(dp,�−1 · · · dp,i)2 is an even integer and dp,i = 0. Otherwise, T = Mp and

5 The symbol |n| means the number of bits of binary representation of n.
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(dp,�−1 · · · dp,i)2 is an odd integer and dp,i = 1. By observing on a single col-
lected power trace, the adversary can try to identify the value of T (in order to
derive the value of dp,i) by SPA. The analysis is summarized in the following.

– if dp,i = 0, Step (03) of the iteration (i − 1) performs:
12 mod p → T0;

– if dp,i = 1, Step (03) of the iteration (i − 1) performs:
M2

p mod n → T0.

Notice that in the proposed attack the adversary does not need to know the
value of Mp = (n− 1) mod p. Recall that p is unknown to the adversary. All the
private key bits of dp can be derived except dp,0 by the above SPA. However,
dp,0 is binary one in the usual case of RSA parameters selection in which d is an
odd integer and p − 1 is an even integer.

Notice also that the proposed attack is still applicable to the RSA with CRT
speedup if the BRIP exponentiation algorithm will be employed. The details of
this attack can be obtained similarly, so the analysis is omitted here.

It was already well known that given the partial private key dp (or dq) and the
public parameters n and e, both the factorization of n and also the private key d
can be available directly. The approach to factorize n is given below. Randomly
select an integer X and computes Y = Xe mod n. Evidently, Y d ≡ X (mod n)
and this leads to Y dp ≡ X (mod p) or equivalently Y dp −X ≡ 0 (mod p). With
the knowledge of dp obtained by the proposed SPA, the adversary can derive p
by computing

p = gcd(Y dp − X, n) = gcd(Y dp − X mod n, n).

With p and q, the RSA private key d can be computed. So, the adversary does
not need to analyze on the computation of M

dq
q mod q in order to derive dq.

4.2 Extension to Randomly Chosen-Message Attack

An important question to answer about the proposed attack is that whether
identification of n−1 as input message can be a sufficient countermeasure. Basi-
cally, for some cases, the answer is negative because of the following extended and
more powerful attack with slightly different assumption. In the extended attack,
two power consumption traces are necessary, but the related input messages are
far from a fixed and specific value of n − 1.

The extended attack on the square-multiply-always algorithm (refer to Fig. 2)
performs as follows. The adversary selects a pair of input messages M1 (can
be any random message) and M2 = M1 × (n − 1) mod n and collects the two
related power consumption traces of computing Md

1 mod n and Md
2 mod n. The

adversary can mount successfully an SPA by observing the collision of middle
results between these two power consumption traces in order to identify zero
bits of the private key d. The basic idea is that collision will happen when

Mk
1 ≡ Mk

2 (mod n)

if the exponent k is an even integer.
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In the SPA-protected exponentiation algorithm in Fig. 2, if some key bit di is
zero, then collision on values of T among the two collected power consumption
traces can be detected at the end of iteration i since

M
(dm−1···di)2
2 ≡ M

(dm−1···di)2
1 · (n − 1)(dm−1···di)2 ≡ M

(dm−1···di)2
1 (mod n).

Therefore, the Step (03) of iteration (i−1) will be a collision instance (the same
operation with same operand). This is summarized in the following.

– if di = 0, Step (03) of the iteration (i − 1) of both the two observed compu-
tations perform the same:
(M (dm−1···di)2

1 )2 mod n → T0;
– if di = 1, Step (03) of the iteration (i − 1) of both the two observed compu-

tations perform differently:
either (M (dm−1···di)2

1 )2 mod n → T0

or ((n − 1) × M
(dm−1···di)2
1 )2 mod n → T0.

This SPA enables the adversary to derive all the private key bits of d except d0.
It is interesting to notice that the above extended attack can be considered

as a variant of the doubling attack [7]. Both attacks exploit two related cho-
sen messages (however with different forms) and collision detection by SPA on
squaring operations (the Step (03)) within two exponentiations.

There is however some difference between the two attacks. In the doubling
attack, the adversary observes on collision occurred in two “different” iterations
of two power consumption traces. On the contrary, in the proposed extended
attack, the adversary observes on collision occurred in the “same” iteration (in
fact, the exactly same timing duration) of two power consumption traces. ¿From
practical point of view for the SPA scenario, the collision detection on the same
iteration will be more or less easier than on different iterations. This is especially
the case when both attacks deal with random input messages, and try to observe
on collision of random computations that will be varying/different during the
whole process of the algorithm.

One possibility to detect the proposed extended attack is to check the rela-
tionship6 between two input messages on whether Mj = Mi × (n− 1) mod n for
every pair of i and j. It is however extremely difficult and infeasible to detect
all the relationship of input messages since Mi and Mj may not be two consec-
utive input messages to mount the attack. By the way, it is infeasible to store
all previous input messages in order to perform the detection, especially for the
applications with smart card.

5 Conclusions

It was previously believed that the BRIP algorithm can be an effective counter-
measure against SPA and DPA. However, our research reveals that the BRIP
6 In the doubling attack, similar approach is to check whether Mj = M2

i mod n for
every pair of i and j.
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algorithm is vulnerable to a new SPA. By the way, the well known left-to-right
square-multiply-always algorithm (for SPA resistance) is also shown to be inse-
cure against the proposed attack.

Notice especially that the proposed SPA can also be applicable to the sce-
nario of RSA decryption even if RSA-OAEP padding will be considered. The
reason is that the ciphertext validity checking is performed after the private ex-
ponentiation computation. So, the attacker still can collect the power trace(s).

Some extensions of the attack are also considered in this paper which include
the application on RSA with CRT speedup and how to use randomly chosen
messages to mount a similar attack.
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