
Side Channel Cryptanalysis on SEED�

HyungSo Yoo1, ChangKyun Kim1, JaeCheol Ha2,��,
SangJae Moon1, and IlHwan Park3

1 School of Electrical Engineering and Computer Science,
Kyungpook National Univ., Daegu, 702-701, Korea

{hsyoo,dreamps}@m80.knu.ac.kr, sjmoon@knu.ac.kr
2 Division of Information Science, Korea Nazarene Univ.,

Cheonan, Choongnam, 330-718, Korea
jcha@kornu.ac.kr

3 National Security Research Institute, Daejeon, Korea
ilhpark@etri.re.kr

Abstract. The Korea standard block cipher, SEED, is a 128-bit sym-
metric block cipher with a more complex F function than DES. This
paper shows that SEED is vulnerable to two types of side channel at-
tacks, a fault analysis attack and a power analysis attack. The first one
is a fault insertion analysis which induces permanent faults on the whole
left register of 15-round. This attack allows one to obtain the secret
key by using only two faulty cipher texts for encryption and decryption
processing respectively. The second attack is a more realistic differential
power analysis. This attack requires about 1000 power traces to find the
full secret key. The above two attacks use a reverse property of the F
function to obtain secret key, where the reverse property is derived from
the our research.

Keywords: Side channel attack, Fault insertion analysis, Differential
power analysis, block cipher, SEED.

1 Introduction

In September 1996, Boneh et al. announced a new cryptanalytic attack which
could affect security of cryptographic modules [6]. They succeeded in breaking
the RSA with CRT by using one correct signature and one faulty one. In this
attack, hardware faults and errors which occur during the operations of a cryp-
tographic device might leak information about the private key. Lenstra et al.
improved this attack by finding two secret prime number using only one faulty
signature of a message [15, 19]. Consequently, many papers have been published
concerning the resistance of RSA cryptosystems with CRT to fault attacks [2,

� This research has been supported by University IT Research Center Project.
�� The third author was also supported in part by Korea Nazarene University research

fund.

C.H. Lim and M. Yung (Eds.): WISA 2004, LNCS 3325, pp. 411–424, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

412 HyungSo Yoo et al.

26, 27]. Also the fault attack by optical illumination [23] or by spike genera-
tor [2] has been reported and is much more feasible and potential for breaking
cryptosystems.

In addition, Biham and Shamir have published a paper [4] detailing a fault
analysis attack which is applicable to secret key cryptosystems such as Data
Encryption Standard (DES). Assuming the same register faults that Boneh et
al. considered [6], they showed that DES could be broken. They combined two
attack techniques differential cryptanalysis [3] and fault analysis. Dusart et al.
showed how DFA (Differential Fault Analysis) works on Advanced Encryption
Standard (AES) [9]. They implemented this attack on a PC, then found the
full AES-128 key by analyzing less than 50 cipher texts. In 2002, Giraud also
presented a paper describing two types of DFA attacks on AES [11] using between
50 and 250 faulty cipher texts.

On the other hand, Kocher et al. [17] firstly introduced power attacks in-
cluding the simple and differential power analyses (referred to as SPA and DPA,
respectively). In SPA, a single power consumption of a cryptographic execution
is measured and a trace is analyzed to classify operations which are related to
secret information. In DPA, an adversary measures hundreds of power signal
traces, divides them into two groups using a classification criterion, and makes
a differential computation between the two averaged values. Since the averaging
and subtraction of two signal groups results in the amplification of small power
differences which occur during the execution of an algorithm. In general, DPA is
more powerful than SPA [7, 12, 25]. In fact, it has been reported that secret key
cryptosystems (AES and DES) as well as public key cryptosystems (RSA and
ECC) are vulnerable to DPA [5, 17, 20, 21].

In this paper, we show that the SEED which is a national industrial associa-
tion standard algorithm in Korea (TTAS.KO-12.0004, 1999) and an international
standard candidate for ISO/IEC SC27 CD 18033-3 [14, 18] is vulnerable to both
fault attack and power attack. This paper is mostly divided in two parts. In the
first part, the SEED is vulnerable to a fault insertion analysis which induces
permanent faults on a whole left register of 15-round. This attack allows us to
obtain the secret key by using only two faulty cipher texts for encryption and
decryption processing respectively. The first reason having vulnerable property
is that F function of SEED is recoverable, that is, if input and output are known,
then adversary can find round key. The second reason is that if 1-round and 16-
round key are known, then he can completely find full secret key. In the second
part, the SEED is also vulnerable to a DPA. By using this attack, we can get
a output value of a F function of 1-round during a decryption processing. The
rest of this attack is similar to fault attack. This paper shows our experimental
results of DPA on SEED.

This paper is organized as follows. In section 2, we give a brief overview of
SEED. In section 3, we present our fault analysis, including our assumptions and
the theory behind the attack. Section 4 shows the DPA method on SEED and our
experimental results. Finally in section 5 we briefly discuss the countermeasure
against the two types of attack on SEED and make a conclusion.

Side Channel Cryptanalysis on SEED 413

2 SEED Algorithm

The Korea standard block cipher, SEED is a secret key block cipher with a 128-
bit data block and a 128-bit secret key. This algorithm has a Feistel structure
with 16 rounds and a 128-bit input-output data block. The following notations
are used throughout this paper.

� : addition in modular 232

� : subtraction in modular 232

⊕ : bitwise exclusive OR(XOR)
& : bitwise AND
<< n : left circular rotation by n bits
>> n : right circular rotation by n bits
‖ : concatenation

2.1 Structure of SEED

A input plain text of a 128-bits is divided into two 64-bit blocks. The right 64-bit
block R0 is an input to the F function with a first 64-bit round subkey which is
generated from the round key generation processing. The output of F function is
XORed with the left 64-bit block L0. After 16 round encryption processings, the
final 128-bit output is a cipher text. The overview of SEED structure is shown
in Figure 1.

L0 R0

F

K1

L1 R1

F

K2

L15 R15

F

K16

L16 R16

Ki = Ki,0 || Ki,1

i-round key

Fig. 1. Structure of SEED.

414 HyungSo Yoo et al.

The F function also has a 64-bit Feistel structure. The input block is divided
into two blocks (C, D) and XORed with two 32-bit subkeys (Ki,0, Ki,1). After
mixing subkeys, two blocks are passed through three layers of G function with
addition in modular 232. The structure of F function is shown in Figure 2.

G

+

G

+

G+

Ki,0 Ki,1

C D

C` D`

Fig. 2. The F function.

As shown in Figure 3, the G function used in F function has two security
layers. The first layer consists of two S-boxes generated from boolean functions
X247 and X251. Here, S boxes can be represented by two lookup tables. The 32-
bit input of G function is divided into 4 blocks. Each 8-bit block pass through the
8 × 8 S-boxes, S2 and S1. The second layer consists of permutation processing
of S-box outputs which is a computation by AND operation with four specific
values from m0 to m3. After XOR processing of expanded 16 blocks, G function
generates a final 32-bit output.

Y3 = S2(X3), Y2 = S1(X2), Y1 = S2(X1), Y0 = S1(X0),
Z3 = (Y0&m3) ⊕ (Y1&m0) ⊕ (Y2&m1) ⊕ (Y3&m2),
Z2 = (Y0&m2) ⊕ (Y1&m3) ⊕ (Y2&m0) ⊕ (Y3&m1),
Z1 = (Y0&m1) ⊕ (Y1&m2) ⊕ (Y2&m3) ⊕ (Y3&m0),
Z0 = (Y0&m0) ⊕ (Y1&m1) ⊕ (Y2&m2) ⊕ (Y3&m3).

2.2 Round Key Generation

The round key generation function uses the G function, addition in modular
232, subtraction in modular 232, and left (right) circular rotation by 8 bits.

Side Channel Cryptanalysis on SEED 415

X3 X2 X1 X0

S2 S1 S2 S1

Z3 Z2 Z1 Z0

&m3 &m2 &m1 &m0 &m3 &m2 &m1 &m0 &m3 &m2 &m1 &m0 &m3 &m2 &m1 &m0

Fig. 3. The G function.

A 128-bit input key is separated into four 32-bit blocks (A, B, C, D). The two
divided blocks perform addition (or subtraction) in modular 232 and subtraction
(addition) by the constant KC1. The 1-round keys K1,0 and K1,1 are generated
using final G function operations. After an 8-bit right rotation of the left 64-bits
the second round keys K2,0 and K2,1 are generated by addition, subtraction by
the constant KC2, and G functions. The rest of the subkeys are generated in
the same way, as shown in Figure 4.

3 Fault Analysis Attack on SEED

On a smart card, a fault may be induced in many ways, such as by a power glitch,
by a clock pulse, or by radiation from a laser, etc. In this paper, the fault attack
assumes that the permanent fault occurs on whole bit of a register. This attack
is similar to one of two assumptions made by Biham and Shamir in fault attack
for DES [4]. The other fault attack assumption is difficult to apply to our fault
attack and is difficult to implement experimentally. One criticism against this
second model, a differential fault analysis attack, is that the transient fault attack
assumed by Biham and Shamir [4] is not realistic. Therefore, we assume a more
practical fault model that will be less controversial. Our fault attack assumes
that we can cut a wire or destroy a memory cell in a cryptoprocessor such as
a smart card. As a result, the values in affected location can be considered to
be permanently fixed. We assume that an adversary can insert these permanent
faulty values into some memory cells. Some papers make similar assumptions in
their work [1, 4, 22].

3.1 Fault Analysis Attack

We assume that SEED is implemented in hardware as 16 unrolled hardware
rounds. For this attack, it suffices to destroy all the bits of the LSB of register L15

416 HyungSo Yoo et al.

A B C D

+

+

-

+

G

G

A || B

>> 8

A B C D

+

-

-

+

G

G

KC1

KC1

K1,0

K1,1

KC2

KC2

K2,0

K2,1

C || D

<< 8

C DA B

Fig. 4. Round key generation.

or set them to known values. This attack assumes that we can destroy a memory
cell in a register or cut a wire. As a result, we consider the memory cells to be
fixed to known values. This attack is a pure cipher text only attack, which does
not require any information about plain texts. Based upon this assumption, we
can find the 16-round keys, K16,0 and K16,1. The 16-round in the implementation
of SEED is shown in Figure 5.

Our attack to find out the 16-round subkeys is composed of 4 steps as follows.

Step 1
We induce the faults to destroy all the bits of the LSB register L15 or set
them to known values. In addition, we can see the final output of SEED, L16

and R16. Therefore, we can find the input and outputs of the F function. In
the end, we want to find the 16-round keys K16,0 and K16,1 when we know
the input and output of the F function.

Step 2
Given that inputs and outputs in F function of Figure 2 (C, D, C′, and D′)
are known, we want to find the keys K16,0 and K16,1. As for the addition in
modular 232, the inverse operation is subtraction in the same modular. So,
based on the assumption that the output of G function is known, if we can
find the input of it, we safely say that we can extract the 16-round keys.

Side Channel Cryptanalysis on SEED 417

L15 R15

F

K16

L16 R16

Fig. 5. 16-round of SEED.

Step 3
Let us attempt to find the inputs of G function given the outputs. In Figure
3, we denote the 32-bit inputs as X0, X1, X2 and X3, and the outputs as Z0,
Z1, Z2 and Z3. It is enough to know the inverse values of function S by S-
box tables S1 and S2. Consequently, the outputs of S-boxes are the result of
S2(X3)||S1(X2)||S2(X1)||S1(X0). An important point to emphasize is that
the least significant bits Z00, Z10 , Z20 and Z30 are determined by 4 bit inputs
S20(X3)||S10(X2)||S20(X1)||S10(X0). Here, Zij is a jth bit of Zi. By selecting
8 out of 16 inputs combined by S20(X3), S10(X2), S20(X1), and S10(X0)
we can calculate the correct output bit Z00. Similarly, by selecting 4 out
of 8 inputs to check bit Z00, we can calculate the correct output bit Z10

and by selecting 2 out of 4 inputs to check Z10 bit, we can calculate the
correct output bit Z20. Finally, by selecting 1 out of 2 inputs to check bit
Z20, we can calculate the correct output bit Z30. As a result, if we know
the outputs of the G function, then we can compute its inputs, that is, the
G function becomes reversible; there is a reverse computational method to
find the inputs for given outputs. We will use the notation G−1 function to
represent this inverse computational algorithm for G function.

Step 4
We know the inverse method for a G function and the addition function in
modular 232. Therefore, the reverse computation for a F function shown in
Figure 2 is possible. Finally, given the input and output of F function, we
can find the 16-round keys, K16,0 and K16,1.

3.2 Secret Key Attack Using Two Round Keys

After fault insertion at 16-round for encryption of plain text, we can calculate
16-round keys by using the final cipher text. Additionally, after fault insertion at
16-round for decryption of the cipher text, we can compute 1-round keys using
the final plain text. Note that it is not necessary to use a genuine cipher text as
an input. It is sufficient to use random data as an input because an adversary is
only interested in the decryption operation.

Now, let us examine how to search the 128-bit secret key given a 1-round
and a 16-round keys. As you see in Figure 4, a 128-bit input key is divided
into four 32-bit blocks, and then used to generate a 64-bit round key at each

418 HyungSo Yoo et al.

round. The round key generation algorithm uses four computational operations:
circular rotation by 8 bits, addition (subtraction) in modular 232 and G function.
As has been noted, we can compute inverse values of function G and addition
(subtraction) in modular 232. Therefore, if we know the 1-round keys K1,0 and
K1,1 in Figure 4, then we know two temporary values (A + C) and (B − D) as
follows.

A + C = G−1(K1,0) + KC1 = T1,0

B − D = G−1(K1,1) − KC1 = T1,1

A3||A2||A1||A0 + C3||C2||C1||C0 = T1,0

B3||B2||B1||B0 − D3||D2||D1||D0 = T1,1

Note that the A and B used in 16-round key generation are the same that
were used in 1-round due to 8 right circular rotations by 8 bits. Furthermore, C
and D used in the 16-round key generation are the same that operated by only
one right circular rotations by 8 bits for 1-round C and D.

A + L((C||D) >> 8) = G−1(K16,0) + KC16 =T16,0

B − R((C||D) >> 8) = G−1(K16,1) + KC16 =T16,1

A3||A2||A1||A0 + D0||C3||C2||C1 =T16,0

B3||B2||B1||B0 − C0||D3||D2||D1 =T16,1

Here, L() means the extraction of the left 32 bits from 64 bits data and
R() means right extraction. In order to compute the secret key, we subtract two
equations as follows.

T16,1 − T1,1 = D3||D2||D1||D0 − C0||D3||D2||D1

T1,0 − T16,0 = C3||C2||C1||C0 − D0||C3||C2||C1

As you know, if C and D are known, then A and B can easily be computed.
Figure 6 describes the operation to subtract two temporary round keys. As shown
in Figure 6, knowing T16,1 − T1,1 and T1,0 − T16,0, we can compute 256 possible
secret keys. Now, let D0 be a random 8 bit value. Then we can compute D1 as
D0 − R7−0(T16,1 − T1,1) where R7−0(K) denotes the bits from the LSB to the
7th bit of K. Consecutively, we can compute D2 from D1 − R15−8(T16,1 − T1,1)
as follows.

D1 = D0 − R7−0(T16,1 − T1,1)
D2 = D1 − R15−8(T16,1 − T1,1)
D3 = D2 − R23−16(T16,1 − T1,1)
C0 = D3 − R31−24(T16,1 − T1,1)
C1 = C0 − R7−0(T1,0 − T16,0)
C2 = C1 − R15−8(T1,0 − T16,0)
C3 = C2 − R23−16(T1,0 − T16,0)
D0 = C3 − R31−24(T1,0 − T16,0)

Side Channel Cryptanalysis on SEED 419

Note that D0 used to compute D1 = (D0 −R7−0(T16,1 − T1,1)) is same with
the final value C3 − R31−24(T1,0 − T16,0). Finally, we can compute 256 C and
D from 256 D0. If 256 C and D are known, then 256 A and B can simply be
computed. These 256 secret keys can always generate secret keys which satisfy
the relationship between 1-round and 16-round keys. The final step to find a
complete secret key is to do an exhaustive search of the 256 possible secret
keys. Known plain text/cipher text pair (using the fault-inserted cipher text),
a computer can find the unique secret key satisfied the text-pair from the 256
possible secret keys by an exhaustive software search. Thus, we can find the
full secret key using only two faulty cipher texts, where one is the output for
encryption processing, and the other is for decryption processing.

We assume that SEED is implemented as a single round, which is used 16
times. This is an iterated hardware implementation of SEED. In this case we
generate a permanent fault in the left-half register, in which all of the bits are
permanently fixed. At this point, it doesn’t matter whether the value of the left-
half register is zero or known values. In iterated implementations, we can also
apply the proposed attack which can compute the 1-round and 16-round keys.

D3 D2 D1 D0

C0 D3 D2 D1

T16,1 - T1,1

C3 C2 C1 C0

D0 C3 C2 C1

T1,0 - T16,0

Fig. 6. Differential value between two temporary round keys.

4 Power Analysis Attack on SEED

Proposition 1. If both the input and output value of the F function in i-round
are known, i-round key can be computed using a reverse algorithm of the F
function.

DPA is a powerful attack in which an adversary collects a number of power
traces from a hardware device as it repeatedly executes a cryptographic opera-
tion. In our DPA attack, an adversary must have knowledge of inputs processed
by the device. Furthermore the same secret key is used in encryption (decryp-
tion) over multiple plain texts (cipher texts).

Our basic implementation of DPA is as follows. Assume that an adversary is
able to input two 64-bit plain texts R0 and L0, and measures power consumption
traces. Now, an adversary would like to attack the 1-round keys K1,0 and K1,1

as shown in Figure 7. Since the input and output of F function are known,
according to Proposition 1, he can extract the 1-round key.

420 HyungSo Yoo et al.

L0 R0

F

K1

L1 R1

63-bit random value
except one bit

Fixed value
for power attack

Fig. 7. The DPA attack in 1-round of SEED.

For example, we will find the least significant bit (LSB) of the output of F
function at the 1-round. First, the value of the right half input R0 is fixed during
attack processing. Then, the left half input L0 is randomly selected. We use a
left input value which sets the LSB of L0 to 0 or 1 and then measure the power
signal at register R1 during encryption processing. Let Tit be a sampled type
of the power consumed. The i index corresponds to the ith power signal and t
index corresponds to the time of the sample. Given the random L0, the Tit are
split into two sets according to the LSB of L0 as follows.

T0 = {Tit | LSB of L0 = 0}
T1 = {Tit | LSB of L0 = 1}

Let T0 be the set of measured traces where LSB is 0 and T1, the set where
LSB is 1. Both T0 and T1 will contain the same number of traces. Then we
compute the average of the partitioning traces as follows:

A0[t] =
1

|T0|
∑

Tit∈T0

Tit

A1[t] =
1

|T1|
∑

Tit∈T1

Tit

Here, the number of measurements in a trace, N = |T0| = |T1|, depends on
sampling rate and memory capacity. The differential trace of A0(t) and A1(t) is
defined for t = 1, ..., m as:

�[t] = A1[t] − A0[t]

lim
N→∞

�[t] = A1[t] − A0[t] =

{
0 if t �= t∗

ε if t = t∗

Assume that the register R1 is stored at time t∗ and t is equal to t∗. If the
expected difference of power traces has a positive peak, ε > 0, then the LSB of
F function of the 1-round is 0 because the storing power consumption for bit “1”
is more than for bit “0”. Similarly, if the difference between power traces has a

Side Channel Cryptanalysis on SEED 421

0 200 400 600 800 1000 1200 1400 1600
20

40

60

80

100

120

140

160

180

Time [us/div]

V
ol

ta
ge

 [m
V

]

Fig. 8. Single power trace of an XOR operation which is L0 ⊕ 64-bit of F function.

negative peak ε < 0, then the LSB of F function of the 1-round is 1. So, we can
find the LSB bit of the output of F function at the 1-round. In addition, when t
is not equal to t∗, the power dissipation is independent of the LSB because the
smart card is manipulating bits other than the LSB.

We show that SEED is vulnerable to our DPA by an experimental result. Our
experiment was made on the 1-round implementation of SEED. Figure 8 shows a
single power trace of an XOR operation to find the output of F function. Figure
9 illustrates the average difference between A0(t) and A1(t), in which we know
whether the LSB of F function of the 1-round is 0 or 1. The signals in Figure 9
were obtained by averaging 5000 random power traces to observe a clear view
of peak, but we have also been able to mount this attack with only 1000 power
traces.

In our example, we have only discussed finding the LSB of F function at
the 1-round. However, by a similar partition method to other bit using above
measured traces, an adversary can steal all the bits of F function of the 1-round.
As an above result and Proposition 1, we can extract the 1-round key.

As mentioned above, if the 1-round key is vulnerable to DPA during the
encryption processing, then the 16-round key can also be revealed during de-
cryption. Therefore, an adversary can be compute a complete secret key from
the 1-round and 16-round keys. The rest of this attack is similar to the fault
attack described in section 3.2.

5 A Remark on Countermeasures and Conclusion

In this paper, we have shown that SEED is vulnerable to both a fault attack and
a power attack. The basic assumption of the two attacks is that we can induce the

422 HyungSo Yoo et al.

0 0.5 1 1.5 2 2.5 3

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [us/div]

V
ol

ta
ge

 [m
V

]

Threshold

Threshold

Negative peak

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [us/div]

V
ol

ta
ge

 [m
V

]

Threshold

Threshold

Positive peak

(b)

Fig. 9. Differential power traces. In the case (a), a negative peak is observed since the
LSB bit of F function is 1, while in the case (b), a positive peak is observed since the
LSB bit of F function is 0. We can make a decision about the threshold value by many
experiments.

output values of F function through the side channel attack techniques. Since F
function of SEED is recoverable if input and output are known, this assumption
is quite reasonable and realistic. To achieve the real attack, we demonstrated

Side Channel Cryptanalysis on SEED 423

by power analysis experiment described in section 4. Our attacks is applicable
to other block ciphers with Feistel structure. Furthermore, if target cipher has
a recoverable properties for F function under our assumption, the round key is
easily extracted by an adversary. Unfortunately, the SEED has a weakness to
leak the full secret key by analyzing with only two round keys.

Countermeasures for resisting the fault insertion attacks can be implemented
using both hardware [16] and software methods to detect any intrusions by ex-
ternal voltage variations, external clock variations, and physical fault induction
attack. To defeat the power analysis, a power signal reduction technique, a self-
timed dual-rail method, a sense amplifier based logic, a non-deterministic pro-
cessor, etc., are needed [8, 10, 13, 24]. Implementers need to consider these side
channel attacks when designing secure smart card systems. It is also important
to prove the validity of some countermeasures not given in this paper.

Acknowledgement

The authors wish to thank the anonymous referees for their helpful remarks and
suggestions.

References

1. R. Anderson and M. Kuhn, “Tamper resistance – a cautionary note,” In Proc. of
the Second USENIX Workshop on Electronic Commerce, pp. 1-11, November 1996.
Available from http://www.usenix.org

2. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J. Seifrert, “Fault attacks on
RSA with CRT: Concrete results and practical countermeasures,” In Cryptographic
Hardware and Embedded Systems – CHES ’02, LNCS 2523, pp. 260–275, Springer-
Verlag, 2002.

3. E. Biham and A. Shmir, “Differential cryptanalysis of the full 16-round DES,” In
Advances in Cryptology – CRYPTO ’92, LNCS 740, pp. 487–496, Springer-Verlag,
1992.

4. E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,”
In Advances in Cryptology – CRYPTO ’97, LNCS 1294, pp. 513–525, Springer-
Verlag, 1997.

5. B. Boer, K. Lemke, and G. Wieke, “A DPA attack against the modular reduction
within a CRT implementation of RSA,” In Cryptographic Hardware and Embedded
Systems – CHES ’02, LNCS 2523, pp. 228–243, Springer-Verlag, 2002.

6. D. Boneh, R.A. DeMillo, and R.J. Liption, “On the importance of checking cryp-
tographic protocols for faults,” In Advances in Cryptology – EUROCRYPT ’97,
LNCS 1233, pp. 37–51, Springer-Verlag, 1997.

7. J. Coron, “Resistance against differential power analysis for elliptic curve cryp-
tosystems,” In Cryptographic Hardware and Embedded Systems – CHES ’99, LNCS
1717, pp. 292–302, Springer-Verlag, 1999.

8. J.F. Dhem and N. Feyt, “Hardware and software symbiosis helps smartcard evo-
lution,” In IEEE Micro 21, pp. 14-25, 2001.

9. P. Dusart, G. Letourneux, and O. Vivolo, “Differential fault analysis on A.E.S,” In
Applied Cryptography and Network Security – ACNS ’03, LNCS 2846, pp. 293–306,
Springer-Verlag, 2003.

424 HyungSo Yoo et al.

10. N. Feyt, “Countermeasure method for a microcontroller based on a pipeline archi-
tecture,” United States Patent 20030115478, June 19, 2003.

11. C. Giraud, “DFA on AES,” In IACR, Cryptology ePrint Archive, Available from
http://eprint.iacr.org/2003/008/, 2003

12. J.C. Ha and S.J. Moon, “Randomized signed-scalar multiplication of ECC to resist
power attacks,” In Cryptographic Hardware and Embedded Systems – CHES ’02,
LNCS 2523, pp. 551–563, Springer-Verlag, 2002.

13. J.I. den Hartog, J. Verschuren, E.P. de Vink, J. Vos, and W. Wiersma, “PINPAS:
a tool for power analysis of smartcards,” In Information Security Conference –
SEC ’03, pp. 453–457, Kluwer Academic, 2003.

14. ISO/IEC JTC 1/SC27, “Third Party Evaluation on SEED by CRYPTEC,”
ISO/IEC JTC 1/SC27 N3213, April 23, 2002.

15. M. Joye, A.K. Lenstra, and J.-J. Quisquater, “Chinese remaindering based cryp-
tosystems in the presence of faults,” In Journal of Cryptology, vol. 12, no. 4, pp.
241–245, 1999.

16. R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent error detection of fault-
based side-channal cryptanalysis of 128-bit symmetric block ciphers,” Proc. of
IEEE DEsign Automation Conference, pp. 579–585, 2001.

17. P. Kocher, J. Jaffe and B. Jun, “Differential power analysis,” In Advances in Cryp-
tology – CRYPTO ’99, LNCS 1666, pp. 388–397, Springer-Verlag, 1999.

18. Korea Information Security Agency, Block Cipher Algorithm SEED, Available from
http://www.kisa.or.kr/seed/seed eng.html.

19. A.K. Lenstra, “Memo on RSA signature generation in the presence of faults,”
September 1996.

20. T. Messerges, E. Dabbish, and R. Sloan, “Power analysis attacks of modular ex-
ponentiation in smartcards,” In Cryptographic Hardware and Embedded Systems –
CHES ’99, LNCS 1717, pp. 144–157, Springer-Verlag, 1999.

21. T. Messerges, “Securing the AES finalists against power analysis attacks,” In Fast
Software Encryption – FSE ’00, LNCS 1978, pp. 150–164, Springer-Verlag, 2000.

22. J.A. Muir Techniques of Side Channel Cryptanalysis, masters thesis, 2001. Avail-
able from http://www.math.uwaterloo.ca/̃jamuir/sidechannel.htm.

23. S.P. Skorobogatov and R.J. Anderson, “Optical fault induction attacks,” In Cryp-
tographic Hardware and Embedded Systems – CHES ’02, LNCS 2523, pp. 2–12,
Springer-Verlag, 2002.

24. K. Tiri, M. Akmal, I. Verbauwhede, “A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards,” In 28th European Solid-State Circuits Conference –
ESSCIRC ’02, September, 2002.

25. C.D. Walter, “Some security aspacts of the MIST randomized exponentiation al-
gorithm,” In Cryptographic Hardware and Embedded Systems – CHES ’02, LNCS
2523, pp. 564–578, Springer-Verlag, 2002.

26. S.M. Yen, S.J. Moon, and J.C. Ha, “Hardware fault attack on RSA with CRT
revisited,” In Information Security and Cryptology – ICISC ’02, LNCS 2587, pp.
374–388, Springer-Verlag, 2002.

27. S.M Yen, S.J. Moon, and J.C. Ha, “Permanent fault attack on the parameters of
RSA with CRT,” In Information Security and Privacy – ACISP ’03, LNCS 2727,
pp. 285–296, Springer-Verlag, 2003.

	1 Introduction
	2 SEED Algorithm
	2.1 Structure of SEED
	2.2 Round Key Generation

	3 Fault Analysis Attack on SEED
	3.1 Fault Analysis Attack
	3.2 Secret Key Attack Using Two Round Keys

	4 Power Analysis Attack on SEED
	5 A Remark on Countermeasures and Conclusion
	References

